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SUMMARY

A continuum-based sizing design sensitivity analysis (DSA) method is presented for the transient dynamic
response of non-linear structural systems with elastic}plastic material and large deformation. The methodo-
logy is aimed for applications in non-linear dynamic problems, such as crashworthiness design. The
"rst-order variations of the energy forms, load form, and kinematic and structural responses with respect to
sizing design variables are derived. To obtain design sensitivities, the direct di!erentiation method and
updated Lagrangian formulation are used since they are more appropriate for the path-dependent problems
than the adjoint variable method and the total Lagrangian formulation, respectively. The central di!erence
method and the "nite element method are used to discretize the temporal and spatial domains, respectively.
The Hughes}Liu truss/beam element, Jaumann rate of Cauchy stress, rate of deformation tensor, and
Jaumann rate-based incrementally objective stress integration scheme are used to handle the "nite strain
and rotation. An elastic}plastic material model with combined isotropic/kinematic hardening rule is
employed. A key development is to use the radial return algorithm along with the secant iteration method
to enforce the consistency condition that prevents the discontinuity of stress sensitivities at the yield
point. Numerical results of sizing DSA using DYNA3D yield very good agreement with the "nite di!erence
results. Design optimization is carried out using the design sensitivity information. Copyright ( 2000
John Wiley & Sons, Ltd.

KEY WORDS: sizing design sensitivity; transient dynamics; elastic}plastic material; "nite strain and rotation;
DYNA3D

1. INTRODUCTION

There have been a limited number of research results in DSA of transient dynamic response of
non-linear structural systems with elastic}plastic material and large deformation. Choi and
Santos [1, 2] presented a uni"ed approach for sizing DSA of non-linear structural systems that
included truss, beam, plane elastic solid and plate components. Park and Choi [3] developed



a continuum DSA method for responses of non-linear structural systems with rate-independent
elastic}plastic material under small deformation and small strain assumptions for truss and
membrane elements. Lee and Arora [4] developed a sizing DSA method for structural systems
with elastic}plastic material using the continuum formulation and implemented using their
in-house FEA code. Tsay and Arora [5] applied the non-linear DSA method to path-dependent
problems with small strain assumption using the total Lagrangian formulation. Vidal and Haber
[6] used an implicit integration scheme and the consistent tangent operator for DSA of structures
with elastic}plastic materials. The consistent tangent sti!ness matrix obtained at the end of the
constitutive iteration of FEA was used to update the response sensitivities at the current time
step. With the consistency between equilibrium and constitutive iterations, no iterations were
required to evaluate the constitutive relation in the design sensitivity formulation.

Hughes and Liu [7, 8] presented a non-linear "nite element formulation to account for "nite
strain and rotation e!ects. They presented a non-linear constitutive algorithm, which is incremen-
tally objective for large rotational increments and maintains the zero normal stress condition in
the rotating stress co-ordinate system. Hughes et al. [9, 10] discussed the construction of the
element and the lumped mass matrices and showed that the critical time steps for transient
analysis can be larger if the lumped mass matrix is used. An elastic}plastic material model that is
time-independent, non-thermal, isotropic, and combined isotropic/kinematic hardening rule with
the von Mises yield surface and associative #ow rule was proposed by Krieg and Key [11].

Even with these advancements, there is still a lack of e!ective methods that are applicable to
optimum design of structural non-linear dynamic problems such as crashworthiness. In this
paper, the update Lagrangian formulation and direct di!erentiation method, that are more
appropriate for the path-dependent problems than the total Lagrangian formulation and adjoint
variable method, are applied to derive the design sensitivity formulations. The sensitivity
information is used for design optimization of a vehicle frame.

2. NON-LINEAR TRANSIENT DYNAMIC ANALYSIS

The left subscript and left superscript denote the reference and the designated con"guration
numbers, respectively. The right subscript and superscript represent the tensor component and
the iteration counter, respectively. Unless the con"guration number is speci"ed, the current
con"guration (n#1) is assumed. The following are used to simplify notations:

* (f ),n`1
n

(f ): incremental quantity,
(f ),n`1(f ): total quantity at the current con"guration (n#1),
!,n!, ),n): boundary and domain at the previous con"guration (n), respectively.

The equations of motion (Cauchy's "rst law of motion) of an arbitrary point of the body can be
written by using the conservation law of linear momentum as

p
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z(X, 0)"0z in ) (4)

and

z,t (X, 0)"0z,t in ) (5)

In the updated Lagrangian formulation, the previous con"guration (n) is used as the reference
frame. Using the updated Lagrangian formulation with simpli"ed notations, the variational
equation can be rewritten as

P
n`1t
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[d (z,tt , z6 )#a (z, z6 )] dt"P
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and f
i
and ¹

i
are external body force intensity and surface traction, respectively. Once the solution

z,tt,n`1z,tt is obtained from Equation (6), the remaining kinematic unknowns in the next time
step can be computed using the central di!erence integrator that imposes dynamic equilibrium at
the two end points of the "nite time interval as

n`1*t"n`1t!nt (10)

n`1@2z,t"n~1@2z,t#n*tnz,tt (11)

and

n`1z"nz#1
2
(n*t#n`1*t)n`1@2z,t (12)

2.1. Element formulation

To treat "nite strain and rotation, it is necessary to use appropriate stress and strain measures,
stress integration scheme and element formulation. The rate of deformation tensor and the
Jaumann rate-based stress integration scheme have desirable objectivity to handle "nite rotation
problems. The Hughes}Liu beam element has several desirable features such that it is incremen-
tally objective, allowing for the treatment of "nite strains including "nite transverse shear strains.
Consider the solid element with an isoparametric mapping of the bi-unit cube as shown in
Figure 1.
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Figure 1. Hughes}Liu beam element.

A point x in the element can be interpolated using the global nodal co-ordinates of node I and
the element shape functions evaluated at node I [12, 13] as
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where N
I
(m)"1

2
(1#mm

I
) is the one-dimensional shape function, xI the position vector on the

reference axis at node I, Y< I, Z) I are unit "bre vectors in y- and z-directions at node I, z`gI , z~gI , z`fI ,
z~fI are thickness function evaluated at the top and bottom surfaces and x#

gI , x!

gI , x#

fI , x!

fI are
position vectors located at the top and bottom surfaces.

In the Hughes}Liu beam element, the displacements of the reference axis and the rotations
of the "bre vectors characterize the deformation and "nite strains including "nite transverse
shear strain. The displacements are obtained using the Newton}Euler equation. The rotation
matrix R to update the "bre vectors can be obtained using the rotational displacements and the
Hughes}Winget algorithm [13, 14]. The rotation matrix R is second-order accurate and
incrementally objective as

R"(I!cW)~1 [I#(1!c)W] (14)
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and

W"
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where *z
4
, *z

5
, and *z

6
are incremental rotational displacements in global Cartesian co-

ordinates, and u and c are a spin tensor and a parameter in the generalized midpoint rule for
integration, respectively. The updated unit "bre vectors can be obtained as

n`1Y<"RnY< (16)

and

n`1Z<"RnZ< (17)

2.2. Stress integration

For the "nite rotation, it is necessary to choose the appropriate stress and strain measures and the
stress integration scheme that have objectivity characteristics. In this paper, Jaumann rate of
Cauchy stress, rate of deformation tensor, and Jaumann rate based incrementally objective stress
integration scheme are used. The stress of the elastic}plastic material is integrated incrementally
in time so that

p
ij
(t#dt)"p

ij
(t)#pR

ij
(t) dt (18)

The material time derivative of the stress tensor is given by

pR
ij
"p+

ij
#p

ik
u

kj
#p

jk
u

ki
(19)

where the Jaumann stress rate is given by

p+

ij
"C

ijkl
eR
kl

(20)

and C
ijkl

is the stress-dependent constitutive matrix.

3. SIZING DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION

3.1. Sizing design sensitivity formulation

The mathematical theory of the di!erentiability of non-linear structural responses has not yet
been well developed in the literature, whereas a reasonably complete theory of the di!erentiability
of linear structural responses is given in Reference [15]. Thus, the di!erentiability is assumed
in deriving design sensitivity expressions in this paper. Consider the equations of motion
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Figure 2. Deformation of body with sizing design perturbation.

corresponding to the original design u and the perturbed design u#qdu, at the current con"gura-
tion (n#1), as

d
u
(z,tt, z6 )#a

u
(z, z6 )"l

u
(z6 ) for all z6 3Z (21)

and

d
u`qdu ((z,tt)q, z6 q)#a

u`qdu (zq , z6 q)"l
u`qdu (z6 q ) for all z6 q3Z (22)

Equations (21) and (22), with Figure 2 showing the schematic of deformation for the original and
the perturbed designs, state that the di!erence of the response between the original and perturbed
designs is small for a small design perturbation qdu. Hence, as the design perturbation vanishes, so
does the di!erence in the responses.

The "rst-order variations of each term in Equation (21) with respect to its explicit dependence
on the design variable u are de"ned as

d@du (z8 ,tt, z6 ),
d

dq
d
u`qdu ((z8 ,tt)q , z6 q )Dq/0

(23)

a@du (z8 , z6 ),
d

dq
a
u`qdu (z8 q, z6 q) Dq/0

(24)

and

l@du (z6 ),
d

dq
l
u`qdu (z6 q )Dq/0

(25)
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where the &&' denotes that the dependence on the design variation is suppressed and the virtual
displacement z6 is independent of q. Note that both the kinetic energy form [d (z,tt, z6 )] and the load
form [l (z6 )] are linear with respect to their arguments. However, the strain energy form [a(z, z6 )] is
non-linear due to the "nite strain and rotation, and the material non-linearity. The "rst-order
variations of the solution z,tt of Equation (21) and the response z with respect to the sizing design
variable u are de"ned as

z@,tt,
d

dq
z,tt (u#qdu) Dq/0

"lim
q?0

z,tt (u#qdu)!z,tt (u)

q
(26)

and

z@,
d

dq
z (u#qdu) Dq/0

"lim
q?0

z (u#qdu)!z(u)

q
(27)

Using the above notation, since the co-ordinates and the design variation parameter q are
independent variables, the order of taking the "rst-order variation and the partial derivative of
the response can be interchanged as (z,i)@"(z@)

,i
[1]. Using the chain rule of di!erentiation and

Equations (23)}(25), the "rst-order variation of each term in Equation (21) becomes

d

dq
d
u`qdu (z,tt (u#qdu), z6 s)Dq/0

"d@du (z8 ,tt, z6 )#d
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d

dq
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Taking the "rst-order variation of Equation (21) yields

d@du (z8 ,tt, z6 )#d
u
(z@,tt , z6 )#a@du (z8 , z6 )#a*

u
(z; z@, z6 )"l@du (z6 ) for all z6 3Z (31)

where a*
u
(z; z@, z6 ) represents that the "rst-order di!erentiation is taken for the non-linear argument

z. The explicit form of the variational Equation (31) can be obtained, in the absence of the traction
loading for simplicity, using the de"nition of the energy and load forms of Equations (7)}(9) as
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3.2. Design sensitivity of structural responses

To obtain the stress sensitivity, consider the elastic}plastic material model proposed by Kreg and
Key [11]. If material properties E and E

1
are used alternatively depending on the state of the

stress, the stress sensitivity expression may be discontinuous [4]. Hence, a uni"ed stress expres-
sion is desirable to represent both states of the stress to avoid this di$culty. The trial stress p* for
the radial return algorithm can be written as

p*
ij
"np

ij
#C

ijkl
*e

kl
(33)

Also, the trial deviatoric stress s* can be determined by

s*
ij
"p*

ij
!1

3
p*
kk
!a

ij
(34)

where a is a back-stress tensor.
In elastic state, the stress p

ij
depends only on the state of strain. However, beyond the yield

stress p
y
, non-recoverable plastic deformation occurs. The yield function that describes the

pressure-independent yield surface is the function of the deviatoric stress tensor as

>""2!p2
y

(35)

where

"2"3
2

s
ij
s
ij

(36)

and

p
:
"p

0
#(1!b)E

1
e1
%&&

(37)

and p
0

and p
:
are the initial and the current yield stresses, respectively; and the parameter b is

equal to one for kinematic hardening and zero for isotropic hardening. Also, the plastic hardening
modulus and the e!ective plastic strain are de"ned, respectively, as

E
1
,

EE
5

E!E
5

(38)

and

e1
%&&
,P

5

0
A
2

3
eR 1
ij
eR 1
ijB

1@2
dt (39)

where eR p is the plastic part of strain rate tensor.
If the state is elastic (i.e. >)0), the trial stresses are accepted. Otherwise, in the plastic state,

the e!ective plastic strain is computed and the stress deviator is scaled back using a return
mapping algorithm and the von Mises yield criterion. The additive decomposition of the strains
and the plane stress plasticity are assumed in this material model. The application of the Jaumann
rate to update the stress raises the possibility that the normal stress may not be equal to zero.
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Figure 3. Secant iteration for plane plasticity.

Therefore, to update the stress in the plastic state, the secant iteration method is used during
the return mapping [17] to enforce the condition that the normal strain increment produces zero
normal stress.

The secant iteration method shown in Figure 3 is described by

n`1pk
33
"n`1pk*

33
!(*eP

%&&
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"k
n`1sk

33
(40)
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:
3G#E

1
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and

*ek`1
33

"*ek
33
!n`1pk

33
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33
!*ek~1

33
pk
33
!pk~1

33

(42)

where the two starting values, *ek
33

and *ek~1
33

, are obtained from the initial elastic estimate and
by assuming a purely plastic increment. That is

*ek
33
"*ek

22
"!1

2
*ek

11
(43)

Once *ek, point A in Figure 3, is initially obtained using the stress-dependent constitutive
relation, pk

33
is determined using Equations (40) and (41). If Dpk

33
D is larger than speci"ed tolerance,

*ek`1 for the next iteration (k#1) is determined by Equation (42). The iteration proceeds to
point B until n`1p

33
is su$ciently small. Finally, the stresses are determined by

n`1p
ij
"n`1p*&*/!-
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!(*eP
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3G
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and
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ij
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The stresses in Equations (44) and (45) are written in a uni"ed expression to represent both
states of the stresses. The "rst-order variations of Equations (44) and (45) are taken to obtain the
stress sensitivities as
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where necessary variations can be computed by taking the "rst-order variations of the previous
Equations (33)}(43) according to the procedure of stress determination.

3.3. Design sensitivity of kinematic responses

Once the solution Mn`1z,ttN@ of Equation (32) is obtained, the sensitivities of the other kinematic
response are found using the central di!erence method as

(n`1@2z,t)@"(n~1@2z,t)@#n*t (nz,tt)@#(n*t)@ nz,tt (48)

and

(n`1z)@"(nz)@#1
2
(n*t#n`1*t) (n`1@2 z,t)@#1

2
(n*t#n`1*t)@n`1@2 z,t (49)

Note that the time step n*t is determined by its geometric and material properties. To obtain
kinematic responses in Equations (48) and (49), n`1*t should be less than the critical time step
that is determined by the material property and the element length as [16]
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Figure 4. Performance measures with variable and "xed time steps.

where i and 0x are the initial geometry and time step scale factor, respectively. I and J represent
the node numbers of the critical element. The design sensitivity of the time step is written as

(n`1*t)@du"iS
3o

3K#4G
(nl)@du

"iS
3o

3K#4G

+3
i/1

[(0x
i
#nz

i
)
J
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i
#nz

i
)
I
] [M(nz

i
)@duNJ!M(nz

i
)@duNI]

nl
(51)

The design sensitivity of the time step will not predict the exact perturbation. Thus, there
is a slight di!erence between the predicted time steps (t@) and the actual time steps (tq) for
the perturbed design, as shown in Figure 4. Even though the di!erence is small, the error
in the time step will accumulate inaccuracy of the design sensitivity of the structural response.
This is especially true for the explicit method. To avoid this di$culty, one can use a small "xed
time step that is less than the critical time step for analysis. In this case, the design sensitivity of
time steps given in Equation (51) is not necessary. This will be discussed later in numerical
examples.

3.4. Direct diwerentiation method

In the path-dependent problem, the state of stresses and plastic strains at a given time depends on
the full history of state variables. The response sensitivity at a given time and position depends on
both the response and the response sensitivities of all previous times and locations of the
structure. In other words, the exact paths of the response and its sensitivity are needed. Thus the
adjoint variable method is not appropriate for the path-dependent problem because each adjoint
solution yields the sensitivity of only one performance measure, rather than the sensitivities of the
full response "elds. Therefore, the direct di!erentiation method is employed in this paper.
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Figure 5. Optimization loop.

3.5. Design optimization

A general optimal design problem can be formulated as

min
b

t (b) (52)

subject to constraints

c"s!s0)0 (53)

and design variable bounds

bl)b)bu (54)

where t is the cost function and b, bl , and b
6

are design variables and their lower and upper
bounds, respectively. Also, s and s

0
are constraints and speci"ed limitations, respectively. The

design problem of Equations (52)}(54) can be solved using a gradient-based mathematical
programming algorithm. The #ow chart of the general optimization procedure is given in
Figure 5.

The design variables, cost function and constraints are provided to the optimizer. If the control
parameter &info' is equal to zero, the optimization is completed. If info"1, the cost function and
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Figure 6. Original and perturbed designs.

constraints are evaluated. If info"2, the gradient of the cost function and the constraints are
evaluated. The proposed DSA method is used to obtain the required gradient information. This
process continues until the desired optimum design is obtained. The optimization is carried out
using the method of feasible direction (MFD) along with the one-dimensional search algorithm
that "rst "nds bounds and then uses polynomial interpolation. The feasible direction is deter-
mined such that, for a su$ciently small step size, the new design is feasible and the new cost
function is smaller than the old one. Once the feasible direction is found, the one-dimensional
search is performed to determine the step size along the feasible direction. For one-dimensional
search, the zero-order method such as equal interval search is ine$cient for many practical
problems. A continuous function on a given interval can be approximated by passing a su$-
ciently high-order polynomial. The minimum point of the approximating polynomial is often
a good estimate of the exact minimum of the one-dimensional search function.

4. NUMERICAL EXAMPLES

4.1. Sizing design sensitivity of cantilever

The purpose of this example is to demonstrate e!ects of the variable integration time step to the
accuracy of the design sensitivity. The dimensions of the original and the perturbed designs, and
boundary conditions are shown in Figure 6. The elastic}plastic material model with the linear
isotropic hardening assumption is used. The MKS unit is used for all numerical examples.

The design sensitivity results are compared with the results of the central "nite di!erences.
To make the time-step size large enough to be within the signi"cant digits of the single precision
(7}8 digits), a "ctitious material is assumed. Young's modulus, density, and Poisson ratio are
20 000, 50 000 and 0.3, respectively. In Table I, the time steps and their sensitivities are presented
at the initial and the "nal (70th) time steps. Note that the "nal time step is noticeably di!erent
from the initial one and the sensitivities of the time steps are not small.

DESIGN SENSITIVITY ANALYSIS AND OPTIMIZATION*PART I 363

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:351}373



Table I. Comparison of time steps and sensitivities.

Initial Final

*t 0.136277E#01 0.143058E#01
(*t)@du !0.344898E!02 !0.693570E#00

Table II. Comparison of DSA accuracy of stress performance
measure.

Single precision Double precision

Time steps Variable Fixed Variable Fixed

10 100.47 99.96 100.46 99.97
20 100.94 99.95 100.93 99.94
30 101.47 99.92 101.47 99.91
40 102.15 99.88 102.16 99.87
50 103.15 99.88 103.16 99.82
60 104.76 99.73 104.89 99.76
70 108.76 99.54 109.15 99.64

If "xed time step is employed in non-linear "nite element analysis, then DSA of the time step is
not necessary.

The results in Table II indicate that the variable time step a!ects the accuracy of design
sensitivity results, even though DSA of the time step is applied to obtain the design sensitivity of
the stress.

The same example is tested using steel with E"2.0E#11 (N/m2), o"7.8E#03 (kg/m2), and
l"0.3. In Table III, the time steps and their sensitivities are presented at the initial and "nal
(500th) time steps. Note that the di!erence between the initial and the "nal time steps is very small
and the sensitivities of these time steps are insigni"cant.

Results in Table IV indicate that the e!ects of the variable time steps are not signi"cant because
the time steps are not varying signi"cantly during analysis. More over, better sensitivity results
are obtained when the double precision is used. The result of this example suggests that the best
combination is to use double precision and a "xed time step for both analysis and DSA.

4.2. Sizing design sensitivity of vehicle frame

Consider a steel vehicle frame structure shown in Figure 7, where "nite strain and rotation e!ects
are considered. The kinematic responses at selected nodes of the longitudinal components are
selected as performance measures. The "nite element model consists of 48 beam elements. To
verify the accuracy of the design sensitivity, some of the longitudinal and the cross components
are perturbed by 1 per cent as shown in Table V, where C

y
and C

z
are the cross-sectional

dimensions of the rectangular beam. Analysis with 118 load steps is performed under the impact
loading (like the one in Figure 6 with the maximum load of 104 kN) for the duration of 2000 ls.
The deformed shape is shown in Figure 7 at selected time steps.
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Table III. Comparison of time steps and sensitivities.

Initial Final

*t 0.170210E!03 0.170210E!03
(*t)@du !0.538410E!13 !0.720552E!10

Table IV. Comparison of DSA accuracy of stress performance
measure.

Single precision Double precision

Time steps Variable Fixed Variable Fixed

10 99.99 99.99 99.99 99.99
100 99.96 99.96 99.99 99.99
200 99.99 99.99 99.99 99.99
300 95.59 95.59 99.99 99.99
400 100.12 100.12 99.99 99.99
500 100.56 100.56 99.99 99.99

Figure 7. Initial design and deformed shapes of vehicle frame.

The transient history of the design sensitivities of acceleration is shown in Table VI for selected
nodes and time steps. It is noted in this problem that the acceleration is more sensitive with
respect to the design than the velocity and displacement. Also, it is noted that the sensitivities of
the displacement and velocity are more accurate than the sensitivity of the acceleration. In this
table, dt represents the predicted variation using the proposed DSA method; *t represents the
"nite di!erence result; and dt/*t stands for the agreement of the predicted variation with respect
to the "nite di!erence result. In Table VI, the sensitivity of the y-acceleration at node 40 yields
90.41 per cent agreement at load step 40 but improves to 98.46 per cent at time step 70, which
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Table V. Perturbed components for sizing DSA of vehicle frame.

Description of Pert. of C
y

Pert. of C
z

component Element (%) (%)

Longitudinal-middle 4, 5, 6, 7, 8, 9 1.000 0.000
Longitudinal-front 10, 11, 12, 13, 14, 15 0.000 1.000
Second cross component 37, 38, 39, 40, 41, 42 1.000 1.000
Third cross component 43, 44, 45, 46, 47, 48 1.000 1.000

implies that analytical sensitivity provides better sensitivity results than the "nite di!erence for
the highly non-linear problem. If the analytical sensitivities were inaccurate, the error should have
been accumulated at later load steps. In Table VII, the sensitivities of the shear stress at element
1 yields around 110 per cent agreement but are improved at later load steps, which also implies
that the analytical DSA method yields better sensitivity results.

4.3. Sizing design optimization of vehicle frame

The vehicle frame model needs to be designed to absorb as much energy as possible and to
transfer less energy to the passenger in the event of crash or impact situation. The design objective
is as follows: determine the cross-sectional dimensions of structural components, subject to
kinematic and structural limitations such that the speci"ed acceleration levels are minimized and
the speci"ed responses meet the prescribed criteria.

Based on the "nite element analysis results of the initial design, the cost function, constraints,
and design variables are selected to improve the response at some speci"ed location and time. The
cost function, which is the total translational acceleration at the speci"ed location and time, is
de"ned as

t (b)"S
3
+
i/1

(nz
i,tt

)2
m

(55)

which is computed at node m"43 and load step n"118. Also, the normalized constraint vector
c is de"ned as

c
1
"!

(95z
1,tt

)
43

7.0]104
!1.0 (56)

c
2
"

(110z
2,tt

)
43

7.0]104
!1.0 (57)

and

c
3
"

1

4.0]102
/%
+
i/1

ds
i
dt
i
l
i
!1.0 (58)
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which are x- and y-directional accelerations at node 43 (load steps 95 and 110), respectively, and
the total mass. In Equation (58), &ne' stands for the number of elements, and ds

i
and dt

i
represent

s and t directional cross-sectional dimensions of the ith element, respectively.
The other constraints are

c
4
"!

(118z
1
)
38

1.6]10~1
!1.0 (59)

c
5
"!

(71p
11

)
15

7.0]109
!1.0 (60)

c
6
"!

(74p
12

)
15

7.0]108
!1.0 (61)

and

c
7
"

(118e1
%&&

)
15

4.5]10~2
!1.0 (62)

which are the x-directional displacement at node 38 (at load step 118), the axial stress at element
15 (at load step 71), the shear stress at element 15 (at load step 74), and the plastic strain at element
15 (at load step 118), respectively. The design variable vector b consists of the cross-sectional
dimensions of "nite elements in the longitudinal-middle and longitudinal-front components.
The initial design and their bounds are

b
i
"5.0]10~2 (63)

(b
i
)l"10~2 (64)

and

(b
i
)
6
"10~1 (65)

where i"1}48. The results of the optimal design of the vehicle frame are summarized in
Table VIII. The constraint violations at the initial design have been removed at the optimum
design. The total number of design iterations is 32.

The front longitudinal frame and the "rst cross component are deformed more at the optimum
design, as shown in Figure 8. Note that nodes 38 and 43 deformed less at the optimum design.
As a consequence, the total acceleration at node 43 has been reduced greatly as shown in
Figure 9. The total acceleration at node 43, which is the cost function, is greatly reduced from
1.00035E#05 to 9.42576E#03 as shown in Figure 9.

All constraints at the speci"ed time steps are satis"ed. Signi"cant improvements are observed
in some of them. In Figure 10, the shear stress at element 15 is generally increased but improved at
the speci"ed time step 74. In general, optimization of dynamic problems cannot be carried out to
satisfy the constraints for all time steps. This example demonstrates that the desired character-
istics can be achieved selectively using the optimization method.
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Table VIII. Results for optimum design of vehicle frame.

Initial Optimum
Cost function 1.00035E#05 9.42576E#03

Constraints

1 1.28253E!02 !1.13217E#00
2 1.48291E!01 !7.85414E!01
3 !7.50875E!02 !5.10425E!02
4 1.28688E#00 !4.78688E!02
5 3.48466E!01 !5.54900E!01
6 5.29057E!01 !6.85186E!01
7 9.50889E!01 !5.62444E!02

No. Initial Optimum No. Initial Optimum No. Initial Optimum

Design variables

1 5.00000E!02 1.00000E!02 2 5.00000E!02 1.64916E!02 3 5.00000E!02 3.15014E!02
4 5.00000E!02 2.41634E!02 5 5.00000E!02 9.99917E!02 6 5.00000E!02 9.99979E!02
7 5.00000E!02 1.00000E!02 8 5.00000E!02 3.00872E!02 9 5.00000E!02 8.29344E!02

10 5.00000E!02 9.83872E!02 11 5.00000E!02 1.00000E!02 12 5.00000E!02 1.00000E!02
13 5.00000E!02 1.00000E!02 14 5.00000E!02 1.00000E!02 15 5.00000E!02 7.06087E!02
16 5.00000E!02 3.50284E!02 17 5.00000E!02 7.18543E!02 18 5.00000E!02 6.46747E!02
19 5.00000E!02 1.00000E!02 20 5.00000E!02 1.04649E!02 21 5.00000E!02 7.65006E!02
22 5.00000E!02 6.12811E!02 23 5.00000E!02 8.89858E!02 24 5.00000E!02 4.22280E!02
25 5.00000E!02 5.26490E!02 26 5.00000E!02 5.27228E!02 27 5.00000E!02 4.94455E!02
28 5.00000E!02 4.94302E!02 29 5.00000E!02 4.95989E!02 30 5.00000E!02 4.95845E!02
31 5.00000E!02 5.02055E!02 32 5.00000E!02 5.02005E!02 33 5.00000E!02 4.99283E!02
34 5.00000E!02 4.99652E!02 35 5.00000E!02 4.98968E!02 36 5.00000E!02 4.99351E!02
37 5.00000E!02 4.98873E!02 38 5.00000E!02 4.98756E!02 39 5.00000E!02 5.11776E!02
40 5.00000E!02 5.13509E!02 41 5.00000E!02 5.11139E!02 42 5.00000E!02 5.15352E!02
43 5.00000E!02 5.11101E!02 44 5.00000E!02 5.12978E!02 45 5.00000E!02 5.03701E!02
46 5.00000E!02 5.05415E!02 47 5.00000E!02 4.98183E!02 48 5.00000E!02 4.98088E!02

5. CONCLUSION

For crash design optimization, continuum-based sizing design sensitivity analysis (DSA) and
optimization methods are developed using DYNA3D for transient dynamic responses of non-
linear built-up structures with elastic}plastic material and large deformation. Sizing design
sensitivity analysis of kinematic and structural performance measures is carried out. The updated
Lagrangian formulation, the explicit time integration, and the direct di!erentiation method are
used for DSA since they are appropriate for highly non-linear path-dependent problems. The
Hughes}Liu beam element formulation, and objective stress}strain measures are used for the
"nite deformation analysis. The elastic}plastic material with combined isotropic/kinematic
hardening assumption is employed along with the radial return algorithm. No discontinuous
design sensitivity of the stress performance measure is observed at the transition point between
the elastic and plastic states due to the radial return method. Numerical implementations of the
sizing DSA expressions are performed using DYNA3D. It is recommended to use the "xed time
step during the time integration and double precision in the explicit code. The numerical
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Figure 8. Deformed shapes.

Figure 9. Total acceleration.

examples show that the analytical sensitivity can yield more accurate results than the "nite
di!erence results in highly non-linear problems. An iterative design procedure that includes
DYNA3D, the developed continuum-based DSA method, and the MFD method shows the
applicability of DSA and optimization methods to obtain an optimum design.
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APPENDIX: NOMENCLATURE

Unless the con"guration number is speci"ed, all the symbols represent the quantities at the
current con"guration (n#1).

a"back stress tensor
a(z, z6 )"strain energy form

b"hardening parameter
!
$
,n!

$
, !

5
,n!

5
"displacement and traction boundaries at con"guration (n), respectively

C"material response tensor
d(t)"time-dependent displacement boundary condition

d(z,tt, z6 )"kinetic energy form
e5 , e5 p, *e"strain rate tensor, plastic part of strain rate tensor and increment of strain

rate tensor, respectively
e1
%&&
"e!ective plastic strain

E, E
1
, E

5
, G, K"Young's, plastic, tangent, shear and bulk moduli, respectively

i"time-step scale factor
l(z6 )"load form

t"performance measure
o"current density

p, pR , p+ , s"Cauchy stress tensor, material time derivative of Cauchy stress, Jaumann
rate of Cauchy stress and deviatoric part of Cauchy stress, respectively

p
:
"yield stress

¹ (t)"time-dependent traction boundary condition
u, *u,W"Spin tensor and increment of spin tensor, respectively

),n)"domain at previous con"guration (n)
X, x"initial and current position vectors, respectively

xI"position vector on the reference axis at node I
xf̀

I
, x~f

I
, xg̀

I
, x~g

I
"position vectors located at the top and bottom surfaces, respectively
>"yield function

Y< I , Z< I"unit "bre vectors in y- and z-direction at node I, respectively
z, *z, z@"displacement, incremental displacement, and "rst-order variation of dis-

placement vector, respectively
z,t, z,tt"velocity and acceleration "elds, respectively
z6 , Z"virtual displacement and space of kinematically admissible virtual dis-

placement, respectively
zf̀

I
, z~f

I
, z g̀

I
, z~g

I
"thickness evaluated at top and bottom surfaces, respectively
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